CHEMICAL METHODS OF BACTERIAL CONTROL, ANTISEPTICS

rvsd 7/25/97, 17 July 2000, 17 July 02, 21 July 03, 14Apr06, 20July07, 23July08, 10Oct12, 21Feb13

TFC, 2ND, P. 194-, Alcamo 4th, pp 669-689, TFC 7th, 193-205, 8th: 192-204, Black 6th: pp328-338, Bauman 2nd: 276-281 Bauman 3rd:271-281

SEE SUMMARY TABLE: p 277 (Targets: membrane, enzymes, cell wall, DNA, metabolism)

Phenolics injure plasma membrane, inactivate enz. halogenation:O-phenylphenol in Lysol

(p 272) increases effectiveness

pHisoHex has hexachlorophene (276) (led to neurological damage in infants):

ALCOHOLS disrupts membranes and denatures enzymes.

not effective against non-enveloped viruses or endospores.

P 273 Especially good for surfaces, tho may primarily wipe off bacteria...

EtOH: 70% aqueous more effective, (water needed to denature protein) generally recommended

Isopropanol seems more effective, less expensive.

graph to compare effectiveness of 95% vs 70% **tinctures:** alcoholic solutions of antimicrobials

HALOGENS may add to tyrosine, denaturing enzymes also strong oxidants,

usually used in tincture (EtOH soln) does not kill all viruses.

P 277 **Iodophors** bind the iodine to organic molecules, release slowly, non-irritating, do not stain so badly:

Betadine, Escodyne

Chlorine used on water esp. Ca hypochlorite (Ca(OCl)₂) used on dairy and swimming pools. Can produce

carcinogenic chlorinated compounds.

Clorox is 5% NaOC1 (1/2 tsp/2 gal clear water, 30 min, to disinfect.)

Chlorine Chlorine and ammonia, used to treat water in emerg., may not be carcionogenic

Bromine used in hot tubs, evaporates more slowly at elevated temperatures

OXIDIZING AGENTS

 H_2O_2 better on inanimate surface (wound enzyme *catalase* inactivates) ozone (O_3) "Fresh smell" after electrical storm, can be used to sanitize water

Zn peroxide: used to irrigate deep wounds,

benzoyl peroxide acne medicine (2 benzoates joined by oxygens)

peracetic acid sporidice, used in food processing. Leaves no toxic residue.

SURFACTANTS amphipatic: emulsify oil on skin, allow removal of bacteria

p 279 Quats: quaternary ammonium salts: bacteriocidal against Gm +, mess up membranes, incr permeability

Cepacol (cetylpyridinium),

Zephiran (benzalkonium), Phemerol.

Pseudomonas can live on these...

CH₂ CH₂

HEAVY METALS break -S-S- disulfide bonds, halt enzyme action (p 275)

Ag 1% AgNO₃ commonly used, formerly for eye protection against gonorrhea

Hg in Mercurochrome and Merthiolate, will wash off, thimerosal formerly in vaccines

Cu used against algae in reservoirs

Zn as anti bact & antifungal in mouthwash, paint, treatment for athletes foot

ALDEHYDES cross link proteins: (p 276)

 $formaldehyde \ as \ formal in \ (37\% \ aqueous \ soln), caution, carcinogenic$

glutaraldehyde (Cidex: 2% even kills spores in 3-10 hrs)

GASES Ethylene oxide (EtO): alkylates proteins denaturing them. Toxic and

explosive...

p 276 highly penetrating, used to sterilize bedding etc. in hospitals

ORGANIC ACIDS inhibits mold by interfering with metabolism

benzoic acid, sorbic acid, propanoic acid (and salts of these: - ate) activity not due to their acidity, rather to enzyme inhibition.

