BIOENERGETICS

Functions of energy in the cell:
- biosynthesis (anabolism)
- mechanical work
- concentration work
- electrical work
- heat energy
- bioluminescence

Source of that energy?: **Phototrophs vs chemotrophs**
See pict on p 110 for overview of energy flow in biosphere

chemotrophs depend on catabolic pathways to yield energy:
1) **fermentation**: breaking bonds without oxidation
 terminal H acceptor is organic
2) **respiration**: involving oxidation
 terminal H acceptor is inorganic

NOTE: Respiration may or may not require O₂ = aerobic, or not: anaerobic (S, N, etc can accept H)

Not 100% efficient: lose heat, and increase in disorder of system (entropy)

THERMODYNAMICS ("heat" + "power"): laws involving energy transactions

FIRST LAW OF THERMODYNAMICS:
Conservation of energy: total energy in universe is constant (matter cannot be destroyed)
Internal energy = E = stored within a system, (not directly measurable)
In biology use enthalpy = H = (inner warmth or heat), the heat content: ∆H = ∆E + ∆(PV)
(Note that enthalpy = E if no change in P or V)
During spontaneous reaction, usually exothermic (heat released) = -∆H
Glucose burnt yields 673 kcal:
Glucose burnt yields 673 kcal: ∆E = -673 Kcal
opposite for synthesis of glucose ∆E = +673 Kcal

take home lesson: A negative ∆H favors spontaneity.

SECOND LAW OF THERMODYNAMICS:
Entropy [S] in the universe is increasing. (Universe tends towards disorder.)
Take home lesson: A positive ∆S favors spontaneity.
DEMO: Dissolve ammonium acetate (or nitrate) in water, note temp change.

Gibbs free energy includes both internal energy and entropy, is **predictor of spontaneity**:

\[\Delta G = \Delta H + T \Delta S \]
\[(T = \text{temp in Kelvin}) \]

\[\Delta G = \Delta H - T \Delta S \]
predicts spontaneity of a chemical reaction
(note that at absolute zero K, ∆H (or ∆E) predicts spontaneity)

take home lesson: All spontaneous reactions have a negative ∆G

Glucose-6-PO₄ → Fructose-6-PO₄:
Kₐq indicates direction of rxn: = products = [F-6-P] = 1
(At equilibrium) reactants [G-6-P] 2

What would be the size of Kₐq, a favorable reaction? = large
(reverse rxn Kₐq small)

I.e., F-6-P to G-6-P has Keq of 2.0