PROTEINS

revised 30 Sept 2106 Campbell 6th: 71-80, 7th: 77-85, Sadava 8th: p42-49, Campbell 9th: 77-86, 10th: 75-83

Proteins: Once thought to be the foremost molecules of biology (therefore: *prot*ein) functions:(p. 76)

nctions:(p. 76)		en nin ne	
enzymes	protein catalysts: amylase, pepsin, etc	group	
defensive	antibodies, compliment		
storage	ovalbumin, casein (both serve as AA sour	ce for development)	
transport	hemoglobin, LDL, HDL		
hormones	peptide hormones like insulin, etc		
receptors	in nerves		
contractile	actin and myosin in muscle		
structure	silk, keratin, collagen		

Chemical definition

LEARN!: a linear polymer of amino acids connected by peptide bonds.

Review amino and carboxyl groups (p 78), both ionize at pH 7:

zwitterion [double charged particle]

Has one asymmetric carbon (L in most proteins) (some weird microbial peptides: D.] Properties of 20 AA depend on **side chain** (R group) (P.77)

	LEARN	these 4 amino acids:	Α
9 are hydrocarbon	(hydrophobic)	glycine	g
6 are polar	(hydrophilic)	cysteine	
5 are ionic	(pH dependent "-" and "+" attract)	aspartic acid	
		lysine	

Proteins unidirectional, written N terminal to C terminus connected by peptide bonds (p 80) **PROTEIN STRUCTURE (LEARN)**: (p 80-81)

Folding of protein is spontaneous: Self Assembly (IMPORTANT!)

p 80 primary: Linear sequence (determines everything else) (mutation alters)

 secondary: local interactions due to bonding between peptide H bonds, not side chains: highly predictable.
alpha helix a la Pauling and Corey, 1951, keratin, collagen β pleated sheet: fibroin in silk, troughs and peaks

fibrous proteins have repeating structure, favor helix and pleated [see excellent 3D demo at: http://www.pdb.org/pdb/explore/jmol.do?structureId=5RSA&bionumber=1]

p 81 tertiary: Depends on (non-repetitive) side chains, not easily predictable
Side chain H bonds, ionic bonds, hydrophobic bonds, disulfide
Disulfide bridges: rearrange for permanent wave: 1: reduce, 2: set, 3: oxidize
globular proteins rely more on tertiary

quaternary: multimeric proteins, above 50,000 MW same forces as as 3rd. **hemoglobin** (a tetramer) is a classic example.

ENZYMES ("inside yeast"): **LEARN**: 2 word definition: Protein catalysts (p 153)

p 152 Illustrate profile of exergonic chemical reaction, role of catalyst ("down break")

-	-	-	
p. 132	Diagram an enzy	me (LEARN):	

apoenzyme (protein portion)

prosthetic group (required to assist apoenzyme

cofactor: inorganic prosthetic group

coenzyme: organic prosthetic group (vitamins)

holoenzyme: active complex of apo- + prosthetic group

active site binds substrate, performs action

Lucy Chocolate factory: https://www.youtube.com/watch?v=Jm1VEO9C4VQ

Configuration is *critical* for enzyme activity.

Factors which affect configuration (p 156): Inhibition of enzymes explain antiseptics, cooking, etc **pH** (Affects charge on ionic side chains) **temperature** affects tightness of folding **osmolarity:** salt and sugar disrupt **disrupt S-S bonds** (Heavy metals.)

Peptide Bond

A molecule of water is removed from two glycine amino acids to form a peptide bond.

Holoenzyme

group